TY - JOUR
T1 - The AUTUMNX magnetometer meridian chain in Québec, Canada
AU - Connors, Martin
AU - Schofield, Ian
AU - Reiter, Kyle
AU - Chi, Peter J.
AU - Rowe, Kathryn M.
AU - Russell, Christopher T.
N1 - Funding Information:
Establishment of AUTUMN was supported by the Canada Foundation for Innovation (CFI) and the Alberta ASRIP Program. Its operation is supported by IOF funds of the CFI. Establishment and operation of AUTUMNX are supported through the Geospace Observatory (GO) Canada initiative of the Canadian Space Agency. We thank Sébastien Guillon of Hydro-Québec for information about harmonic distortion measured in the network. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. We thank J.H. King and N. Papatashvilli for OMNI data, and N. Ness for preliminary ACE data, downloaded through CDAWeb, Howard Singer for GOES data, obtained through the National Geophysical Data Center, and Jesper Gjerloev for use of the SuperMAG site. MC thanks David Sibeck for useful comments about the setting for the impulsive event. We thank the Centre d’Études Nordiques, NRCan, and school boards and astronomy associations in Québec for hosting AUTUMNX sites.
Publisher Copyright:
© 2015 Connors et al.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - The AUTUMNX magnetometer array consists of 10 THEMIS-class ground-based magnetometers deployed to form a meridian chain on the eastern coast of Hudson Bay in eastern Canada, a second partial chain one hour of magnetic local time further east, and one magnetometer at an intermediate midlatitude site. These instruments, augmented by those of other arrays, permit good latitudinal coverage through the auroral zone on two meridians, some midlatitude coverage, and detection of magnetic field changes near the sensitive infrastructure of the Hydro-Québec power grid. Further, they offer the possibility for conjugate studies with Antarctica and the GOES East geosynchronous satellite, and complement the Chinese International Space Weather Meridian Circle Program. We examine current world distribution of magnetometers to show the need for AUTUMNX, and describe the instrumentation which allows near-real-time monitoring. We present magnetic inversion results for the disturbed day February 17, 2015, which showed classic signatures of the substorm current wedge, and developed into steady magnetospheric convection (SMC). For a separate event later that day, we examine a large and rapid magnetic field change event associated with an unusual near-Earth transient. We show GOES East conjugacy for these events.
AB - The AUTUMNX magnetometer array consists of 10 THEMIS-class ground-based magnetometers deployed to form a meridian chain on the eastern coast of Hudson Bay in eastern Canada, a second partial chain one hour of magnetic local time further east, and one magnetometer at an intermediate midlatitude site. These instruments, augmented by those of other arrays, permit good latitudinal coverage through the auroral zone on two meridians, some midlatitude coverage, and detection of magnetic field changes near the sensitive infrastructure of the Hydro-Québec power grid. Further, they offer the possibility for conjugate studies with Antarctica and the GOES East geosynchronous satellite, and complement the Chinese International Space Weather Meridian Circle Program. We examine current world distribution of magnetometers to show the need for AUTUMNX, and describe the instrumentation which allows near-real-time monitoring. We present magnetic inversion results for the disturbed day February 17, 2015, which showed classic signatures of the substorm current wedge, and developed into steady magnetospheric convection (SMC). For a separate event later that day, we examine a large and rapid magnetic field change event associated with an unusual near-Earth transient. We show GOES East conjugacy for these events.
KW - Data inversion
KW - Electrojet
KW - Geomagnetically induced currents
KW - Geomagnetism
KW - Geophysical instrumentation
KW - Substorm
UR - http://www.scopus.com/inward/record.url?scp=84954284901&partnerID=8YFLogxK
U2 - 10.1186/s40623-015-0354-4
DO - 10.1186/s40623-015-0354-4
M3 - Journal Article
AN - SCOPUS:84954284901
SN - 1343-8832
VL - 68
JO - Earth, Planets and Space
JF - Earth, Planets and Space
IS - 1
M1 - 2
ER -