Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning

Shihab Uddin Chowdhury, Sanjana Sayeed, Iktisad Rashid, Md Golam Rabiul Alam, Abdul Kadar Muhammad Masum, M. Ali Akber Dewan

Research output: Contribution to journalJournal Articlepeer-review

5 Citations (Scopus)

Abstract

Dengue is a viral disease that primarily affects tropical and subtropical regions and is especially prevalent in South-East Asia. This mosquito-borne disease sometimes triggers nationwide epidemics, which results in a large number of fatalities. The development of Dengue Haemorrhagic Fever (DHF) is where most cases occur, and a large portion of them are detected among children under the age of ten, with severe conditions often progressing to a critical state known as Dengue Shock Syndrome (DSS). In this study, we analysed two separate datasets from two different countries– Vietnam and Bangladesh, which we referred as VDengu and BDengue, respectively. For the VDengu dataset, as it was structured, supervised learning models were effective for predictive analysis, among which, the decision tree classifier XGBoost in particular produced the best outcome. Furthermore, Shapley Additive Explanation (SHAP) was used over the XGBoost model to assess the significance of individual attributes of the dataset. Among the significant attributes, we applied the SHAP dependence plot to identify the range for each attribute against the number of DHF or DSS cases. In parallel, the dataset from Bangladesh was unstructured; therefore, we applied an unsupervised learning technique, i.e., hierarchical clustering, to find clusters of vital blood components of the patients according to their complete blood count reports. The clusters were further analysed to find the attributes in the dataset that led to DSS or DHF.

Original languageEnglish
Article number229
JournalJournal of Imaging
Volume8
Issue number9
DOIs
Publication statusPublished - Sep. 2022

Keywords

  • Dengue Haemorrhagic Fever
  • Dengue Shock Syndrome
  • Shapley Additive Explanation
  • XGBoosting
  • clinical data
  • dengue
  • hierarchical clustering
  • supervised
  • unsupervised

Fingerprint

Dive into the research topics of 'Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning'. Together they form a unique fingerprint.

Cite this