TY - JOUR
T1 - Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate
AU - Shrestha, Narayan Kumar
AU - Wang, Junye
N1 - Publisher Copyright:
© 2018
PY - 2018/6/1
Y1 - 2018/6/1
N2 - The effects of climate change on sediment yield and transport dynamics in cold climate regions are not well understood or reported. In this study, the Soil and Water Assessment Tool (SWAT) has been built-up, calibrated, and validated against streamflow and sediment load at several monitoring stations in a cold climate region watershed - the Athabasca River Basin (ARB) in Alberta, Canada. The model was then fed with bias-corrected spatial disaggregated high-resolution (~ 10 km) future climate data from three climate models for two emission scenarios (RCP 4.5 and 8.5), and two periods (mid- and end-century). Results show that channel erosion and deposition are the dominant processes over hill slope erosion in the basin. On average, a predicted warmer and wetter future climate has both synergetic and offsetting effects on sediment yield. Changes are sub-region specific and land-use type dependent, thus reflecting a marked spatial and temporal heterogeneity within the basin. Increases on sediment yield in future periods in the agricultural areas are up to 0.94 t/ha/yr, and are greater than reported soil formation rates in the region. Similarly, while substantial increases (by more than two fold) in the sediment load transport through the river reaches were obtained, the changes show both temporal and spatial variability, and are closely aligned with the trend of stream flows. We believe that availability of such models and knowledge of the effect of future climatic conditions would help water managers formulate appropriate scenarios to manage such basins in a holistic way. However, significant uncertainties in future sediment yield and transport, as a result of variations in climatic forcing of different climate models, need to be considered in any adaptation measures.
AB - The effects of climate change on sediment yield and transport dynamics in cold climate regions are not well understood or reported. In this study, the Soil and Water Assessment Tool (SWAT) has been built-up, calibrated, and validated against streamflow and sediment load at several monitoring stations in a cold climate region watershed - the Athabasca River Basin (ARB) in Alberta, Canada. The model was then fed with bias-corrected spatial disaggregated high-resolution (~ 10 km) future climate data from three climate models for two emission scenarios (RCP 4.5 and 8.5), and two periods (mid- and end-century). Results show that channel erosion and deposition are the dominant processes over hill slope erosion in the basin. On average, a predicted warmer and wetter future climate has both synergetic and offsetting effects on sediment yield. Changes are sub-region specific and land-use type dependent, thus reflecting a marked spatial and temporal heterogeneity within the basin. Increases on sediment yield in future periods in the agricultural areas are up to 0.94 t/ha/yr, and are greater than reported soil formation rates in the region. Similarly, while substantial increases (by more than two fold) in the sediment load transport through the river reaches were obtained, the changes show both temporal and spatial variability, and are closely aligned with the trend of stream flows. We believe that availability of such models and knowledge of the effect of future climatic conditions would help water managers formulate appropriate scenarios to manage such basins in a holistic way. However, significant uncertainties in future sediment yield and transport, as a result of variations in climatic forcing of different climate models, need to be considered in any adaptation measures.
KW - Athabasca River basin
KW - Climate change
KW - Cold climate regions
KW - Sediment yield and transport
KW - Swat
UR - http://www.scopus.com/inward/record.url?scp=85040018064&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2017.12.347
DO - 10.1016/j.scitotenv.2017.12.347
M3 - Journal Article
C2 - 29996400
AN - SCOPUS:85040018064
SN - 0048-9697
VL - 625
SP - 1030
EP - 1045
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -