TY - JOUR
T1 - Modelling of strongly swirling flows in a complex geometry using unstructured meshes
AU - Wang, Junye
AU - Priestman, Geoffrey H.
AU - Tippetts, John R.
PY - 2006
Y1 - 2006
N2 - Purpose - Seeks to examine the performance of conventional turbulence models modelling strongly swirling flows within a Symmetrical Turn up Vortex Amplifier, with adjustment of the turbulence model constants to improve agreement with experimental data. Design/methodology/approach - First, the standard k-ε model and the Reynolds Stress Model (RSM) were used with standard values of model constants, using both the first order upwind and the quadratic upstream interpolation for convective kinetics (QUICK) schemes. Then, the swirling effect was corrected by adjusting the model coefficients. Findings - The standard RSM with the QUICK did produce better predictions but still significantly overestimated the experimental data. Much improved simulation was obtained with the systematic adjustment of the model constants in the standard k-ε model using the QUICK. The physical significance of the model constants accounted for changes of the eddy viscosity, and the production and destruction of k and ε. Research limitations/implications - More industrial cases could benefit from this simple and useful approach. Originality/value - The constant adjustment is regular and directed, based on the eddy viscosity and the production and destruction of k and ε. The regularity of the effect of the model constants on the solutions makes it easier to quickly adjust them for other industrial applications.
AB - Purpose - Seeks to examine the performance of conventional turbulence models modelling strongly swirling flows within a Symmetrical Turn up Vortex Amplifier, with adjustment of the turbulence model constants to improve agreement with experimental data. Design/methodology/approach - First, the standard k-ε model and the Reynolds Stress Model (RSM) were used with standard values of model constants, using both the first order upwind and the quadratic upstream interpolation for convective kinetics (QUICK) schemes. Then, the swirling effect was corrected by adjusting the model coefficients. Findings - The standard RSM with the QUICK did produce better predictions but still significantly overestimated the experimental data. Much improved simulation was obtained with the systematic adjustment of the model constants in the standard k-ε model using the QUICK. The physical significance of the model constants accounted for changes of the eddy viscosity, and the production and destruction of k and ε. Research limitations/implications - More industrial cases could benefit from this simple and useful approach. Originality/value - The constant adjustment is regular and directed, based on the eddy viscosity and the production and destruction of k and ε. The regularity of the effect of the model constants on the solutions makes it easier to quickly adjust them for other industrial applications.
KW - Flow
KW - Fluidics
KW - Modelling
KW - Simulation
KW - Turbulence
UR - http://www.scopus.com/inward/record.url?scp=33750707595&partnerID=8YFLogxK
U2 - 10.1108/09615530610702069
DO - 10.1108/09615530610702069
M3 - Journal Article
AN - SCOPUS:33750707595
SN - 0961-5539
VL - 16
SP - 910
EP - 926
JO - International Journal of Numerical Methods for Heat and Fluid Flow
JF - International Journal of Numerical Methods for Heat and Fluid Flow
IS - 8
ER -