TY - JOUR
T1 - Modeling nitrous oxide emissions from three United Kingdom farms following application of farmyard manure and green compost
AU - Shen, Jiacheng
AU - Treu, Roland
AU - Wang, Junye
AU - Thorman, Rachel
AU - Nicholson, Fiona
AU - Bhogal, Anne
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Organic fertilizers, such as manure and compost, are promising additions for synthetic fertilizers in order to increase soil fertility and crop yields. However, the organic fertilizers applied to soils may increase nitrous oxide (N2O, a greenhouse gas) emissions due to their lower C/N ratios, and therefore potentially contribute to global warming. Very few studies have used process-based models to assess the environmental advantages and drawbacks of compost soil amendments compared to other field treatments. In this study, the UK-DNDC model was modified for simulation of nitrous oxide (N2O) fluxes emitted from the soils treated with green compost and farmyard manure at three UK farms (WE, PW and NW): one winter wheat and two grasslands. The results show that the annual overall N2O emissions were 1.45 kg N ha−1 y−1 for WE treated with farmyard manure, 0.71 for WE with green compost, 1.09910 for PW treated with farmyard manure, 0.94 for PW treated with green compost, 1.19 for NW treated with farmyard manure, and 1.18 for NW treated with green compost. A two dimensional linear model was developed to correlate nitrogen loading and soil pH for calculations of emissions and emission factors (EFs). The linear model could fit the emissions obtained from the UK-DNDC model well. The squares of correlation coefficients of the emissions between two models are 0.993 and 0.985 for farmyard manure and green compost, respectively. Analysis of correlation coefficients between N2O emissions and air temperature, precipitation as well as the time period between fertilizer application and sample measurement (PFS) for the three sites treated with farmyard manure and compost indicated that N2O emissions were mainly related to PFS. The modified DNDC model provides an approach to estimating N2O emissions from compost amended soils.
AB - Organic fertilizers, such as manure and compost, are promising additions for synthetic fertilizers in order to increase soil fertility and crop yields. However, the organic fertilizers applied to soils may increase nitrous oxide (N2O, a greenhouse gas) emissions due to their lower C/N ratios, and therefore potentially contribute to global warming. Very few studies have used process-based models to assess the environmental advantages and drawbacks of compost soil amendments compared to other field treatments. In this study, the UK-DNDC model was modified for simulation of nitrous oxide (N2O) fluxes emitted from the soils treated with green compost and farmyard manure at three UK farms (WE, PW and NW): one winter wheat and two grasslands. The results show that the annual overall N2O emissions were 1.45 kg N ha−1 y−1 for WE treated with farmyard manure, 0.71 for WE with green compost, 1.09910 for PW treated with farmyard manure, 0.94 for PW treated with green compost, 1.19 for NW treated with farmyard manure, and 1.18 for NW treated with green compost. A two dimensional linear model was developed to correlate nitrogen loading and soil pH for calculations of emissions and emission factors (EFs). The linear model could fit the emissions obtained from the UK-DNDC model well. The squares of correlation coefficients of the emissions between two models are 0.993 and 0.985 for farmyard manure and green compost, respectively. Analysis of correlation coefficients between N2O emissions and air temperature, precipitation as well as the time period between fertilizer application and sample measurement (PFS) for the three sites treated with farmyard manure and compost indicated that N2O emissions were mainly related to PFS. The modified DNDC model provides an approach to estimating N2O emissions from compost amended soils.
KW - DNDC model
KW - Emission factor
KW - Farmyard manure
KW - Green compost
KW - Greenhouse gases (GHG)
KW - Nitrous oxide
UR - http://www.scopus.com/inward/record.url?scp=85047084428&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.05.101
DO - 10.1016/j.scitotenv.2018.05.101
M3 - Journal Article
C2 - 29801250
AN - SCOPUS:85047084428
SN - 0048-9697
VL - 637-638
SP - 1566
EP - 1577
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -