TY - JOUR
T1 - Making sense of nickel accumulation and sub-lethal toxic effects in saline waters
T2 - Fate and effects of nickel in the green crab, Carcinus maenas
AU - Blewett, Tamzin A.
AU - Glover, Chris N.
AU - Fehsenfeld, Sandra
AU - Lawrence, Michael J.
AU - Niyogi, Som
AU - Goss, Greg G.
AU - Wood, Chris M.
N1 - Funding Information:
This research was supported by two NSERC CRD grants awarded to Scott Smith (Wilfrid Laurier University) and CMW (P.I.’s) with co-funding from the Nickel Producers Environmental Research Association, the International Zinc Association, the International Lead Zinc Research Organization, the International Copper Association, the Copper Development Association, Teck Resources, and Vale Inco. Thanks to Iain McGaw for supplying crabs for dissection, Gary Anderson for the loan of excellent equipment, the Department of Fisheries and Oceans for help with animal collection, and the staff of Bamfield Marine Sciences Centre, especially the research co-ordinator Dr. Eric Clelland, for their assistance. Chris Schlekat, Joe Gorsuch and Mike Dutton are thanked for constructive comments. CMW was supported by the Canada Research Chairs Program.
Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - In freshwater, invertebrates nickel (Ni) is considered an ionoregulatory toxicant, but its mechanism of toxicity in marine settings, and how this varies with salinity, is poorly understood. This study investigated Ni accumulation and physiological mechanisms of sub-lethal Ni toxicity in the euryhaline green crab Carcinus maenas. Male crabs were exposed to 8.2μg/L (the US EPA chronic criterion concentration for salt waters) of waterborne Ni (radiolabelled with 63Ni) at three different salinities, 20%, 60% and 100% SW for 24h. Whole body Ni accumulation in 20% SW was 3-5 fold greater than in 60% or 100% SW, and >80% of accumulated Ni was in the carapace at all salinities. Ni also accumulated in posterior gill 8, which showed a higher accumulation in 20% SW than in other salinities, a pattern also seen at higher exposure concentrations of Ni (500 and 3000μg/L). Gill perfusion experiments revealed that Ni was taken up by both anterior and posterior gills, but in 20% SW the posterior gill 8, which performs ionoregulatory functions, accumulated more Ni than the anterior gill 5, which primarily has a respiratory function. The sub-lethal consequences of Ni exposure were investigated by placing crabs in Ni concentrations of 8.2, 500, and 3000μg/L at 20, 60 or 100% SW for 24h. In 20% SW, haemolymph Ca levels were significantly decreased by exposure to Ni concentrations of 8.2μg/L or higher, whereas Na concentrations were depressed only at 3000μg/L. Na+/K+-ATPase activity was inhibited at both 500 and 3000μg/L in gill 8, but only in 20% SW. Haemolymph K, Mg, and osmolality were unaffected throughout, though all varied with salinity in the expected fashion. These data suggest that Ni impacts ionoregulatory function in the green crab, in a gill- and salinity-dependent manner.
AB - In freshwater, invertebrates nickel (Ni) is considered an ionoregulatory toxicant, but its mechanism of toxicity in marine settings, and how this varies with salinity, is poorly understood. This study investigated Ni accumulation and physiological mechanisms of sub-lethal Ni toxicity in the euryhaline green crab Carcinus maenas. Male crabs were exposed to 8.2μg/L (the US EPA chronic criterion concentration for salt waters) of waterborne Ni (radiolabelled with 63Ni) at three different salinities, 20%, 60% and 100% SW for 24h. Whole body Ni accumulation in 20% SW was 3-5 fold greater than in 60% or 100% SW, and >80% of accumulated Ni was in the carapace at all salinities. Ni also accumulated in posterior gill 8, which showed a higher accumulation in 20% SW than in other salinities, a pattern also seen at higher exposure concentrations of Ni (500 and 3000μg/L). Gill perfusion experiments revealed that Ni was taken up by both anterior and posterior gills, but in 20% SW the posterior gill 8, which performs ionoregulatory functions, accumulated more Ni than the anterior gill 5, which primarily has a respiratory function. The sub-lethal consequences of Ni exposure were investigated by placing crabs in Ni concentrations of 8.2, 500, and 3000μg/L at 20, 60 or 100% SW for 24h. In 20% SW, haemolymph Ca levels were significantly decreased by exposure to Ni concentrations of 8.2μg/L or higher, whereas Na concentrations were depressed only at 3000μg/L. Na+/K+-ATPase activity was inhibited at both 500 and 3000μg/L in gill 8, but only in 20% SW. Haemolymph K, Mg, and osmolality were unaffected throughout, though all varied with salinity in the expected fashion. These data suggest that Ni impacts ionoregulatory function in the green crab, in a gill- and salinity-dependent manner.
KW - Crustacean
KW - Invertebrate
KW - Metal
KW - Nickel
KW - Osmoregulation
KW - Salinity
UR - http://www.scopus.com/inward/record.url?scp=84928154872&partnerID=8YFLogxK
U2 - 10.1016/j.aquatox.2015.04.010
DO - 10.1016/j.aquatox.2015.04.010
M3 - Journal Article
C2 - 25914092
AN - SCOPUS:84928154872
SN - 0166-445X
VL - 164
SP - 23
EP - 33
JO - Aquatic Toxicology
JF - Aquatic Toxicology
ER -