TY - JOUR
T1 - Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide
AU - De La Fuente-Núñez, César
AU - Korolik, Victoria
AU - Bains, Manjeet
AU - Nguyen, Uyen
AU - Breidenstein, Elena B.M.
AU - Horsman, Shawn
AU - Lewenza, Shawn
AU - Burrows, Lori
AU - Hancock, Robert E.W.
PY - 2012/5
Y1 - 2012/5
N2 - Biofilms cause up to 80% of infections and are difficult to treat due to their substantial multidrug resistance compared to their planktonic counterparts. Based on the observation that human peptide LL-37 is able to block biofilm formation at concentrations below its MIC, we screened for small peptides with antibiofilm activity and identified novel synthetic cationic peptide 1037 of only 9 amino acids in length. Peptide 1037 had very weak antimicrobial activity, but at 1/30th the MIC the peptide was able to effectively prevent biofilm formation (>50% reduction in cell biomass) by the Gram-negative pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia and Gram-positive Listeria monocytogenes. Using a flow cell system and a widefield fluorescence microscope, 1037 was shown to significantly reduce biofilm formation and lead to cell death in biofilms. Microarray and follow-up studies showed that, in P. aeruginosa, 1037 directly inhibited biofilms by reducing swimming and swarming motilities, stimulating twitching motility, and suppressing the expression of a variety of genes involved in biofilm formation (e.g., PA2204). Comparison of microarray data from cells treated with peptides LL-37 and 1037 enabled the identification of 11 common P. aeruginosa genes that have a role in biofilm formation and are proposed to represent functional targets of these peptides. Peptide 1037 shows promise as a potential therapeutic agent against chronic, recurrent biofilm infections caused by a variety of bacteria.
AB - Biofilms cause up to 80% of infections and are difficult to treat due to their substantial multidrug resistance compared to their planktonic counterparts. Based on the observation that human peptide LL-37 is able to block biofilm formation at concentrations below its MIC, we screened for small peptides with antibiofilm activity and identified novel synthetic cationic peptide 1037 of only 9 amino acids in length. Peptide 1037 had very weak antimicrobial activity, but at 1/30th the MIC the peptide was able to effectively prevent biofilm formation (>50% reduction in cell biomass) by the Gram-negative pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia and Gram-positive Listeria monocytogenes. Using a flow cell system and a widefield fluorescence microscope, 1037 was shown to significantly reduce biofilm formation and lead to cell death in biofilms. Microarray and follow-up studies showed that, in P. aeruginosa, 1037 directly inhibited biofilms by reducing swimming and swarming motilities, stimulating twitching motility, and suppressing the expression of a variety of genes involved in biofilm formation (e.g., PA2204). Comparison of microarray data from cells treated with peptides LL-37 and 1037 enabled the identification of 11 common P. aeruginosa genes that have a role in biofilm formation and are proposed to represent functional targets of these peptides. Peptide 1037 shows promise as a potential therapeutic agent against chronic, recurrent biofilm infections caused by a variety of bacteria.
UR - http://www.scopus.com/inward/record.url?scp=84860186340&partnerID=8YFLogxK
U2 - 10.1128/AAC.00064-12
DO - 10.1128/AAC.00064-12
M3 - Journal Article
C2 - 22354291
AN - SCOPUS:84860186340
SN - 0066-4804
VL - 56
SP - 2696
EP - 2704
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 5
ER -