Global Distribution of EMIC Waves and Its Association to Subauroral Proton Precipitation During the 27 May 2017 Storm: Modeling and Multipoint Observations

P. R. Shreedevi, Yiqun Yu, Yoshizumi Miyoshi, Xingbin Tian, Minghui Zhu, Vania K. Jordanova, Satoko Nakamura, Chae Woo Jun, Sandeep Kumar, Kazuo Shiokawa, Martin Connors, T. Hori, Masafumi Shoji, I. Shinohara, S. Yokota, S. Kasahara, K. Keika, A. Matsuoka, Akira Kadokura, Fuminori TsuchiyaAtsushi Kumamoto, Yoshiya Kasahara

Research output: Contribution to journalJournal Articlepeer-review

Abstract

Recent simulation studies using the RAM-SCB model showed that proton precipitation contributes significantly to the total energy flux deposited into the subauroral ionosphere thereby affecting the magnetosphere-ionosphere coupling. In this study, we use the BATS-R-US + RAM-SCB model to understand the evolution of ElectroMagnetic Ion Cyclotron (EMIC) waves in the inner magnetosphere, their correspondence to the proton precipitation into the subauroral ionosphere, and to assess the performance of the model in reproducing the EMIC wave-particle interactions. During the 27 May 2017 storm, Arase and RBSP-A satellites observed typical signatures of EMIC waves in the inner magnetosphere. Within this interval, Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA)/MetOp satellites observed significant proton precipitation in the dusk-midnight sector. Simulation results show that H- and He-band EMIC waves are excited within regions of strong temperature anisotropy near the plasmapause. The simulated growth rates of EMIC waves show a similar trend to that of the EMIC wave power observed by the Arase and RBSP-A satellites, suggesting that the model can reproduce the EMIC wave activity qualitatively. The simulated H-band waves in the dusk sector are stronger than He-band waves possibly due to the presence of excess protons in the boundary conditions obtained from the BATS-R-US code. The precipitating proton fluxes reproduced by the simulation with EMIC waves are found to agree reasonably well with the DMSP and NOAA/MetOp satellite observations. It is suggested that EMIC wave scattering of ring current ions can account for proton precipitation observed by the DMSP and MetOp satellites during the 27 May 2017 storm.

Original languageEnglish
Article numbere2023JA032337
JournalJournal of Geophysical Research: Space Physics
Volume129
Issue number6
DOIs
Publication statusPublished - Jun. 2024

Keywords

  • EMIC waves
  • geomagnetic storm
  • global modeling
  • proton precipitation
  • wave-particle interaction

Fingerprint

Dive into the research topics of 'Global Distribution of EMIC Waves and Its Association to Subauroral Proton Precipitation During the 27 May 2017 Storm: Modeling and Multipoint Observations'. Together they form a unique fingerprint.

Cite this