Abstract
The advent of DNA array technology and proteomics has revolutionised biology by allowing global analysis of cellular events. So far, the benefits from these new techniques have primarily been realised for well-characterised species. These organisms are rarely the most relevant for environmental biology and ecotoxicology. Thus, there is a need to explore new ways to exploit transcriptomics and proteomics for non-model species. In the present study, rainbow trout (Oncorhynchus mykiss) were exposed to a sublethal concentration of waterborne zinc for up to 6 days. The response in gill tissue was investigated by differential screening of a heterologous cDNA array and by protein profiling using Surface Enhanced Laser Desorption/Ionisation (SELDI). The cDNA array, which was a high-density spotted library of cDNA from Fugu rubripes gill, revealed differentially expressed genes related to energy production, protein synthesis, paracellular integrity, and inflammatory response. SELDI analysis yielded seven proteins that were consistently present only in zinc-exposed gills, and four proteins unique to gills from control fish. A further 11 proteins were differentially regulated. Identification of these proteins by bioinformatics proved difficult in spite of detailed information on molecular mass, charge and zinc-binding affinity. It is concluded that these approaches are viable to non-model species although both have clear limitations.
Original language | English |
---|---|
Pages (from-to) | 523-535 |
Number of pages | 13 |
Journal | Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology |
Volume | 133 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Dec. 2002 |
Keywords
- Biomarker
- Ecotoxicology
- Fish
- Fugu rubripes
- Genomics
- Metal
- Model hopping
- Proteomics
- Pufferfish
- SELDI
- Zn