Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones

Vishaal Rajani, Gustavo Carrero, David E. Golan, Gerda De Vries, Christopher W. Cairo

Research output: Contribution to journalJournal Articlepeer-review

17 Citations (Scopus)

Abstract

The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a firstpassage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion.

Original languageEnglish
Pages (from-to)1463-1472
Number of pages10
JournalBiophysical Journal
Volume100
Issue number6
DOIs
Publication statusPublished - 16 Mar. 2011

Fingerprint

Dive into the research topics of 'Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones'. Together they form a unique fingerprint.

Cite this