Adaptive and personalized learning based on students’ cognitive characteristics

Ting Wen Chang, Jeffrey Kurcz, Moushir M. El-Bishouty, Kinshuk, Sabine Graf

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

9 Citations (Scopus)


Working memory capacity (WMC) is a cognitive characteristic that affects students’ learning behaviors to perform complex cognitive tasks. However, WMC is very limited and can be easily overloaded in learning activities. Considering students’ WMC through personalized learning materials and activities helps in avoiding cognitive overload and therefore positively affects students’ learning. However, in order to consider students’ WMC in the learning process, an approach is needed to identify students’ WMC without any additional efforts from students. To address this problem, we introduce a general approach to automatically identify WMC from students’ behavior in a learning system. Our approach is generic and designed to work with different learning systems. Furthermore, by knowing students’ WMC, a learning system can provide teachers meaningful recommendations to support students with low and high WMC. Accordingly, we created a recommendation mechanism that provides recommendations based on the guidelines of cognitive load theory. These recommendations are intended to assist in presentation of information in order to reduce working memory overload. Information about WMC is also the basis for designing adaptive systems that can automatically provide students with individualized support based on their WMC.

Original languageEnglish
Title of host publicationLecture Notes in Educational Technology
Number of pages21
Publication statusPublished - 2015

Publication series

NameLecture Notes in Educational Technology
ISSN (Print)2196-4963
ISSN (Electronic)2196-4971


  • Adaptive and personalized learning
  • Cognitive characteristics
  • Working memory capacity


Dive into the research topics of 'Adaptive and personalized learning based on students’ cognitive characteristics'. Together they form a unique fingerprint.

Cite this